Wednesday, October 29, 2008

Fwd: EU biofuels regulatory science





EU biofuel data change angers environmentalists

Wed Oct 29, 2008 12:58pm GMT,
Reuters
 
Email | Print |
Share
| Single Page | Recommend (0)
[-] Text [+]

By Pete Harrison

BRUSSELS (Reuters) - European biofuels could receive a boost from a change in the way the European Union calculates their impact on the environment, a document shows, angering environmentalists who think they do more harm than good.

The European Council document seen by Reuters on Wednesday also annoyed European biodiesel producers who see a bias toward bioethanol.

New figures on how biofuels can help cut greenhouse gas emissions in the fight against climate change follow swiftly after the European Parliament proposed clamping down on their use, fearing negative side effects such as deforestation.

The EU's final stance will be decided in negotiations in coming weeks between the European Parliament and member states, who are discussing the new data this week.

"The timing and lack of transparency surrounding these new figures raises serious questions about how the biofuel lobby has been able to influence the debate," said Nusa Urbancic of environment group T&E.

The European Union's executive has proposed that 10 percent of all road transport fuel comes from renewable sources by 2020, as it seeks to heed U.N. warnings that climate change will bring more extreme weather and rising sea levels.

Much of that 10 percent would come from biofuels, creating a huge potential market that is coveted by exporters such as Brazil, Malaysia and Indonesia, as well as EU farming nations.

But environmentalists charge that biofuels made from grains and oilseeds have pushed up food prices and forced subsistence farmers to expand agricultural land by hacking into rainforests and draining wetlands.

DEFORESTATION

The European Parliament has responded by agreeing to limit fuels from food such as Brazilian sugar to 6 percent of EU fuel.

It has demanded that from the outset biofuels cut greenhouse gas emissions by 45 percent compared to petrol and diesel, an increase on the 35 percent saving originally proposed by the European Commission, which would have ruled out some EU biofuels.

Member states are now considering reclassifying European biofuels to give new values for the greenhouse gas savings they can achieve, according to the European Council document.

Among the new figures, sugar beet ethanol is given a new greenhouse gas saving of 52 percent, up from 35 percent in the European Commission's initial calculations, bringing it back into line with parliament's recommendation.

"This has been done without any transparency," said a spokeswoman for European Biodiesel Board. "Maybe this can be used as a starting point, but in no way can this be used in the longer term without more scientific work and input from biofuels producers."

T&E's Urbancic said the figures appeared to ignore the damage biofuels can cause by using vegetable oils that would otherwise have been used in foods -- thereby creating fresh demand that encourages farmers to expand farmland into forests.

"The Commission and Council are still ignoring the absolutely critical issue of indirect land use change," she said. "They are being selective about the science they take on board."

(Reporting by Pete Harrison, Editing by Peter Blackburn)



Thursday, October 16, 2008

Dupont exec. discusses ILUC

10/09/2008 -- E&ETV: "Later this month, U.S. EPA is expected to release a proposed rulemaking for implementing the lifecycle analysis requirements for biofuels under the renewable fuels standard. Estimating the emissions generated through the production of biofuels has been controversial, particularly with respect to how land-use changes affect emissions. During today's OnPoint, Jack Huttner, vice president of Dupont Danisco Cellulosic Ethanol, gives the biofuels industry's take on how EPA should proceed with the rulemaking. Huttner discusses how the inclusion of indirect land-use emissions could influence his industry's ability to meet the renewable fuels standard."

Wednesday, October 15, 2008

kyoto-wto-biofuels-climate regulation

a couple of relevant links that don't fully answer what climate aspects of biofuels can and cannot be regulated in the eyes of the WTO.  Under Kyoto, it's tough to regulate LUC according to Wetlands International:

http://news.mongabay.com/2007/1205-palm_oil_peatlands.html

Sunday, October 12, 2008

Ag. and Climate Change - New article from Royal Society

Can anyone access this?



Greenhouse gas mitigation in agriculture

IssueVolume 363, Number 1492 / February 27, 2008
Editor(s) Chris Pollock
Jules Pretty
Ian Crute
Chris Leaver
Howard Dalton
Pages789-813
Issue TitleTheme Issue ‘Sustainable agriculture II’ compiled by Chris Pollock, Jules Pretty, Ian Crute, Chris Leaver and Howard Dalton
DOI10.1098/rstb.2007.2184

Authors

1School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
2Carbosur, Constituyente 1467/1202, Montevideo 11100, Uruguay
3Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
4University of Maiduguri, Maiduguri, Borno State 1069, Nigeria
5 Agriculture and Agri-Food Canada, Research Centre, Lethbridge, Alberta, Canada T1J 4B1
6Institute of Economic Growth, University Enclave, Delhi 110 007, India
7Department of Agricultural Economics, Texas A&M University, College Station, TX 77843, USA
8NREL, Colorado State University, Fort Collins, CO 80523, USA
9School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
10Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
11CSIR Division of Water, Environment and Forest Technology, Pretoria 0001, Republic of South Africa
12 All-Russian Institute of Agricultural Meteorology, Obninsk, Kaluga Region 249020, Russia
13 CSIRO Sustainable Ecosystems, GPO Box 284, Canberra, Australian Capital Territory 2601, Australia
14College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
15 Pryanishnikov All-Russian Institute of Agrochemistry (VNIIA), 127550 Moscow, Russia
16Departments of Geosciences and Economics, Hamburg University, 20146 Hamburg, Germany
17The Joint Graduate School of Energy and Environment, King Monkut's University of Technology, Thonburi, Bangmod, Bangkok 10140, Thailand

Abstract

Agricultural lands occupy 37% of the earth's land surface. Agriculture accounts for 52 and 84% of global anthropogenic methane and nitrous oxide emissions. Agricultural soils may also act as a sink or source for CO2, but the net flux is small. Many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management and restoration of degraded lands and cultivated organic soils. Lower, but still significant mitigation potential is provided by water and rice management, set-aside, land use change and agroforestry, livestock management and manure management. The global technical mitigation potential from agriculture (excluding fossil fuel offsets from biomass) by 2030, considering all gases, is estimated to be approximately 5500–6000Mt CO2-eq.yr−1, with economic potentials of approximately 1500–1600, 2500–2700 and 4000–4300Mt CO2-eq.yr−1 at carbon prices of up to 20, up to 50 and up to 100 USt CO < sub > 2 < /sub > -eq. < sup > -1 < /sup > , respectively. In addition, GHG emissions could be reduced by substitution of fossil fuels for energy production by agricultural feedstocks (e.g. crop residues, dung and dedicated energy crops). The economic mitigation potential of biomass energy from agriculture is estimated to be 640, 2240 and 16 000Mt CO < sub > 2 < /sub > -eq.yr < sup > -1 < /sup > at 0–20, 0–50 and 0–100 US t CO2-eq.−1, respectively.

Keywords
greenhouse gas, agriculture, mitigation, cropland management, grazing land, soil carbon
Fulltext Preview (Small, Large, Larger, Largest)
Image of the first page of the fulltext
References

Albrecht, A. & Kandji, S.T. 2003 Carbon sequestration in tropical agroforestry systems. Agric. Ecosyst. Environ. 99, 15–27, (doi:10.1016/S0167-8809(03)00138-5). [CrossRef]

Alcock, D. & Hegarty, R. S. 2005 Effects of pasture improvement on productivity, gross margin and methane emissions of grazing sheep enterprises. In Second Int. Conf. on Greenhouse Gases and Animal Agriculture, Working Papers (eds C. R. Soliva, J. Takahashi & M. Kreuzer), pp. 127–130. Zurich, Switzerland: ETH.

Alvarez, R. 2005 A review of nitrogen fertilizer and conservative tillage effects on soil organic storage. Soil Use Manage. 21, 38–52, (doi:10.1079/SUM2005291). [CrossRef]

Anderson, T.L., Charlson, R.J., Schwartz, S.E., Knutti, R., Boucher, O., Rodhe, H. & Heintzenberg, J. 2003 Climate forcing by aerosols—a hazy picture. Science 300, 1103–1104, (doi:10.1126/science.1084777). [CrossRef]

Andreae, M.O. 2001 The dark side of aerosols. Nature 409, 671–672, (doi:10.1038/35055640). [CrossRef]

Andreae, M.O. & Merlet, P. 2001 Emission to trace gases and aerosols from biomass burning. Global Biogeochem. Cycles 15, 955–966, (doi:10.1029/2000GB001382). [CrossRef]

Andreae, M.O., Jones, C.D. & Cox, P.M. 2005 Strong present-day aerosol cooling implies a hot future. Nature 435, 1187. (doi:10.1038/nature03671). [CrossRef]

Antle, J.M., Capalbo, S.M., Mooney, S., Elliott, E.T. & Paustian, K.H. 2001 Economic analysis of agricultural soil carbon sequestration: an integrated assessment approach. J. Agric. Resour. Econ. 26, 344–367.

Aulakh, M.S., Wassmann, R., Bueno, C. & Rennenberg, H. 2001 Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil. Plant Soil 230, 77–86, (doi:10.1023/A:1004817212321). [CrossRef]

Barthès, B., Azontonde, A., Blanchart, E., Girardin, C., Villenave, C., Lesaint, S., Oliver, R. & Feller, C. 2004 Effect of a legume cover crop (Mucuna pruriens var. utilis) on soil carbon in an Ultisol under maize cultivation in southern Benin. Soil Use Manage. 20, 231–239, (doi:10.1079/SUM2004235). [CrossRef]

Batjes, N. H. 1999 Management options for reducing CO2-concentrations in the atmosphere by increasing carbon sequestration in the soil. Dutch National Research Programme on Global Air Pollution and Climate Change report 410-200-031 and ISRIC technical paper 30, International Soil Reference and Information Centre, Wageningen, The Netherlands.

Bauman, D.E. 1992 Bovine somatotropin: review of an emerging animal technology. J. Dairy Sci. 75, 3432–3451.

Beauchemin, K. & McGinn, S. 2005 Methane emissions from feedlot cattle fed barley or corn diets. J. Anim. Sci. 83, 653–661.

Benz, D.A. & Johnson, D.E. 1982 The effect of monensin on energy partitioning by forage fed steers. Proc. West Section Am. Soc. Anim. Sci. 33, 60.

Beringer, J., Hutley, L.B., Tapper, N.J., Coutts, A., Kerley, A. & O'Grady, A.P. 2003 Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia. Int. J. Wildland Fire 12, 333–340, (doi:10.1071/WF03023). [CrossRef]

Berndes, G., Hoogwijk, M. & van den Broek, R. 2003 The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25, 1–28, (doi:10.1016/S0961-9534(02)00185-X). [CrossRef]

Blaxter, K.L. & Clapperton, J.L. 1965 Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 19, 511–522, (doi:10.1079/BJN19650046). [CrossRef]

Boadi, D., Benchaar, C., Chiquette, J. & Massé, D. 2004 Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Can. J. Anim. Sci. 84, 319–335.

Boehm, M., Junkins, B., Desjardins, R., Kulshreshtha, S. & Lindwall, W. 2004 Sink potential of Canadian agricultural soils. Clim. Change 65, 297–314, (doi:10.1023/B:CLIM.0000038205.09327.51). [CrossRef]

Bouwman, A. 2001 Global estimates of gaseous emissions from agricultural land. Rome, Italy: FAO.

Bruce, J.P., Frome, M., Haites, E., Janzen, H., Lal, R. & Paustian, K. 1999 Carbon sequestration in soils. J. Soil Water Conserv. 54, 382–389.

Cai, Z.C. & Xu, H. 2004 Options for mitigating CH4 emissions from rice fields in China. NIAES Series, no. 5Material circulation through agro-ecosystems in East Asia and assessment of its environmental impact (ed. Hayashi, Y.), pp. 45–55, Tsukuba, Japan: NIAES

Cai, Z.C., Tsuruta, H. & Minami, K. 2000 Methane emissions from rice fields in China: measurements and influencing factors. J. Geophys. Res. 105, 17231–17242, (doi:10.1029/2000JD900014). [CrossRef]

Cai, Z.C., Tsuruta, H., Gao, M., Xu, H. & Wei, C.F. 2003 Options for mitigating methane emission from a permanently flooded rice field. Global Change Biol. 9, 37–45, (doi:10.1046/j.1365-2486.2003.00562.x). [CrossRef]

Caldeira, K., Morgan, M.G., Baldocchi, D., Brewer, P.G., Chen, C.T.A., Nabuurs, G.J., Nakicenovic, N. & Robertson, G.P. 2004 A portfolio of carbon management options. The global carbon cycle. Integrating humans, climate, and the natural world (eds. Field, C.B. & Raupach, M.R.), pp. 103–129, Washington DC: Island Press

Cannell, M.G.R. 2003 Carbon sequestration and biomass energy offset: theoretical, potential and achievable capacities globally, in Europe and the UK. Biomass Bioenergy 24, 97–116, (doi:10.1016/S0961-9534(02)00103-4). [CrossRef]

Cassman, K.G., Dobermann, A., Walters, D.T. & Yang, H. 2003 Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 28, 315–358, (doi:10.1146/annurev.energy.28.040202.122858). [CrossRef]

Cerri, C.C., Bernoux, M., Cerri, C.E.P. & Feller, C. 2004 Carbon cycling and sequestration opportunities in South America: the case of Brazil. Soil Use Manage. 20, 248–254, (doi:10.1079/SUM2004237). [CrossRef]

Chadwick, D.R. 2005 Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: effect of compaction and covering. Atmos. Environ. 39, 787–799, (doi:10.1016/j.atmosenv.2004.10.012). [CrossRef]

Clark, H., Pinares, C. & de Klein, C. 2005 Methane and nitrous oxide emissions from grazed grasslands. Grassland—a global resource (ed. McGilloway, D.), pp. 279–293, Wageningen, The Netherlands: Wageningen Academic Publishers

Clemens, J. & Ahlgrimm, H.J. 2001 Greenhouse gases from animal husbandry: mitigation options. Nutr. Cycl. Agroecosyst. 60, 287–300, (doi:10.1023/A:1012712532720). [CrossRef]

Clemens, J., Trimborn, M., Weiland, P. & Amon, B. 2006 Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric. Ecosyst. Environ. 112, 171–177, (doi:10.1016/j.agee.2005.08.016). [CrossRef]

Cole, C.V. et al. 1997 Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutr. Cycl. Agroecosyst. 49, 221–228, (doi:10.1023/A:1009731711346). [CrossRef]

Conant, R.T. & Paustian, K. 2002 Potential soil carbon sequestration in overgrazed grassland ecosystems. Global Biogeochem. Cycles 16, 90-1–90-9, (doi:10.1029/2001GB001661). [CrossRef]

Conant, R.T., Paustian, K. & Elliott, E.T. 2001 Grassland management and conversion into grassland: effects on soil carbon. Ecol. Appl. 11, 343–355, (doi:10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2). [CrossRef]

Conant, R.T., Paustian, K., Del Grosso, S.J. & Parton, W.J. 2005 Nitrogen pools and fluxes in grassland soils sequestering carbon. Nutr. Cycl. Agroecosyst. 71, 239–248, (doi:10.1007/s10705-004-5085-z). [CrossRef]

Crutzen, P. J. 1995 The role of methane in atmospheric chemistry and climate. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction Proc. Eighth Int. Symp. on Ruminant Physiology (eds W. Von Engelhardt, S. Leonhard-Marek, G. Breves, & D. Giesecke), pp. 291–316. Stuttgart, Germany: Ferdinand Enke Verlag.

Dalal, R.C., Wang, W., Robertson, G.P. & Parton, W.J. 2003 Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Aust. J. Soil Res. 41, 165–195, (doi:10.1071/SR02064). [CrossRef]

Davidson, E.A., Nepstad, D.C., Klink, C. & Trumbore, S.E. 1995 Pasture soils as carbon sink. Nature 376, 472–473, (doi:10.1038/376472a0). [CrossRef]

Derner, J.D., Boutton, T.W. & Briske, D.D. 2006 Grazing and ecosystem carbon storage in the North American Great Plains. Plant Soil 280, 77–90, (doi:10.1007/s11104-005-2554-3). [CrossRef]

Dias de Oliveira, M.E., Vaughan, B.E. & Rykiel, E.J., Jr 2005 Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. BioScience 55, 593–602, (doi:10.1641/0006-3568(2005)055[0593:EAFECD]2.0.CO;2). [CrossRef]

Dohme, F.A., Machmuller, A., Wasserfallen, A. & Kreuzer, M. 2000 Comparative efficiency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with Rusitec. Can. J. Anim. Sci. 80, 473–482.

Edmonds, J.A. 2004 Climate change and energy technologies. Mitig. Adapt. Strat. Global Change 9, 391–416, (doi:10.1023/B:MITI.0000038846.11924.5f). [CrossRef]

Eidman, V.R. 2005 Agriculture as a producer of energy. Agriculture as a producer and consumer of energy (eds. Outlaw, J.L. Collins, K.J. & Duffield, J.A.), pp. 30–67, Wallingford, UK: CAB International

Faaij, A.P.C. 2006 Modern biomass conversion technologies. Mitig. Adapt. Strat. Global Change 11, 335–367, (doi:10.1007/s11027-005-9004-7). [CrossRef]

Falloon, P., Smith, P. & Powlson, D.S. 2004 Carbon sequestration in arable land—the case for field margins. Soil Use Manage. 20, 240–247, (doi:10.1079/SUM2004236). [CrossRef]

FAO/IIASA 2000 Global Agro-Ecological Zones Database. http://www.fao.org/ag/agl/agll/gaez/index.htm. http://www.fao.org/ag/agl/agll/gaez/index.htm

FAOSTAT 2006 FAOSTAT agricultural data. See http://faostat.fao.org/faostat/collections?version=ext&hasbulk=0&subset=agriculture. http://faostat.fao.org/faostat/collections?version=ext&hasbulk=0&subset=agriculture

FAO/UNESCO 2002 FAO digital soils map of the world. On CD. See http://www.fao.org/ag/agl/agll/dsmw.stm. http://www.fao.org/ag/agl/agll/dsmw.stm

Ferris, C.P., Gordon, F.J., Patterson, D.C., Porter, M.G. & Yan, T. 1999 The effect of genetic merit and concentrate proportion in the diet on nutrient utilization by lactating dairy cows. J. Agric. Sci. Camb. 132, 483–490, (doi:10.1017/S0021859699006553). [CrossRef]

Fisher, M.J., Rao, I.M., Ayarza, M.A., Lascano, C.E., Sanz, J.I., Thomas, R.J. & Vera, R.R. 1994 Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371, 236–238, (doi:10.1038/371236a0). [CrossRef]

Foley, J.A. et al. 2005 Global consequences of land use. Science 309, 570–574, (doi:10.1126/science.1111772). [CrossRef]

Follett, R.F. 2001 Organic carbon pools in grazing land soils. The potential of U.S. grazing lands to sequester carbon and mitigate the greenhouse effect (eds. Follett, R.F. Kimble, J.M. & Lal, R.), pp. 65–86, Boca Raton, FL: Lewis

Follett, R.F., Kimble, J.M. & Lal, R. 2001 The potential of U.S. grazing lands to sequester soil carbon. The potential of U.S. grazing lands to sequester carbon and mitigate the greenhouse effect (eds. Follett, R.F. Kimble, J.M. & Lal, R.), pp. 401–430, Boca Raton, FL: Lewis

Freibauer, A., Rounsevell, M., Smith, P. & Verhagen, A. 2004 Carbon sequestration in the agricultural soils of Europe. Geoderma 122, 1–23, (doi:10.1016/j.geoderma.2004.01.021). [CrossRef]

Galloway, J.N., Aber, J.D., Erisman, J.W., Seitzinger, S.P., Howarth, R.W., Cowling, E.B. & Cosby, B.J. 2003 The nitrogen cascade. Bioscience 53, 341–356, (doi:10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2). [CrossRef]

Gonzalez-Avalos, E. & Ruiz-Suarez, L.G. 2001 Methane emission factors from cattle in Mexico. Bioresour. Technol. 80, 63–71, (doi:10.1016/S0960-8524(01)00052-9). [CrossRef]

Gregorich, E.G., Rochette, P., VandenBygaart, A.J. & Angers, D.A. 2005 Greenhouse gas contributions of agricultural soils and potential mitigation practices in eastern Canada. Soil Till. Res. 83, 53–72, (doi:10.1016/j.still.2005.02.009). [CrossRef]

Guo, L.B. & Gifford, R.M. 2002 Soil carbon stocks and land use change: a meta analysis. Global Change Biol. 8, 345–360, (doi:10.1046/j.1354-1013.2002.00486.x). [CrossRef]

Hamelinck, C.N., Suurs, R.A.A. & Faaij, A.P.C. 2004 Techno-economic analysis of international bio-energy trade chains. Biomass Bioenergy 29, 114–134, (doi:10.1016/j.biombioe.2005.04.002). [CrossRef]

Hansen, L.B. 2000 Consequences of selection for milk yield from a geneticist's viewpoint. J. Dairy Sci. 83, 1145–1150.

Helgason, B.L. et al. 2005 Toward improved coefficients for predicting direct N2O emissions from soil in Canadian agroecosystems. Nutr. Cycl. Agroecosyst. 71, 87–99, (doi:10.1007/s10705-004-7358-y). [CrossRef]

Hoogwijk, M. 2004 On the global and regional potential of renewable energy sources. PhD thesis, Copernicus Institute, Utrecht University.

Hoogwijk, M., Faaij, A., Eickhout, B., de Vries, B. & Turkenburg, W. 2005 Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 29, 225–257, (doi:10.1016/j.biombioe.2005.05.002). [CrossRef]

International Panel on Climate Change (IPCC) 1996 Climate change 1995: the science of climate change. Contribution of working group I to the 2nd assessment report of the IPCC. Cambridge, UK: Cambridge University Press.

International Panel on Climate Change (IPCC) 1997 Revised 1996 IPCC guidelines for national greenhouse gas inventories workbook, vol. 2. Cambridge, UK: Cambridge University Press.

International Panel on Climate Change (IPCC) 2000 Special report on land use, land-use change and forestry. Cambridge, UK: Cambridge University Press.

International Panel on Climate Change (IPCC) 2001 Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press.

International Panel on Climate Change (IPCC) 2003 Good practice guidelines for greenhouse gas inventories for land-use, land-use change & forestry. Kanagawa, Japan: Institute of Global Environmental Strategies (IGES).

Izaurralde, R.C., McGill, W.B., Robertson, J.A., Juma, N.G. & Thurston, J.J. 2001 Carbon balance of the Breton Classical plots over half a century. Soil Sci. Soc. Am. J. 65, 431–441.

Janzen, H.H. 2004 Carbon cycling in earth systems—a soil science perspective. Agric. Ecosyst. Environ. 104, 399–417, (doi:10.1016/j.agee.2004.01.040). [CrossRef]

Johnson, K.A. & Johnson, D.E. 1995 Methane emissions from cattle. J. Anim. Sci. 73, 2483–2492.

Johnson, D.E., Ward, G.M. & Torrent, J. 1991 The environmental impact of bovine somatotropin (bST) use in dairy cattle. J. Dairy Sci. 74, 209.

Johnson, D.E., Phetteplace, H.W. & Seidl, A.F. 2002 Methane, nitrous oxide and carbon dioxide emissions from ruminant livestock production systems. Greenhouse gases and animal agriculture (eds. Takahashi, J. & Young, B.A.), pp. 77–85, Amsterdam, The Netherlands: Elsevier

Jones, C.D., Cox, P.M., Essery, R.L.H., Roberts, D.L. & Woodage, M.J. 2003 Strong carbon cycle feedbacks in a climate model with interactive CO2 and sulphate aerosols. Geophys. Res. Lett. 30, 321–324.

Jordan, E. Lovett, D. K. Hawkins, M. & O'Mara, F. P. 2004 The effect of varying levels of coconut oil on methane output from continental cross beef heifers. In Proc. Int. Conf. on Greenhouse Gas Emissions from Agriculture—Mitigation Options and Strategies (ed. A. Weiske), pp. 124–130. Leipzig, Germany: Institute for Energy and Environment.

Jordan, E., Lovett, D.K., Monahan, F.J. & O'Mara, F.P. 2006 Effect of refined coconut oil or copra meal on methane output, intake and performance of beef heifers. J. Anim Sci. 84, 162–170.

Jordan, E., Kenny, D., Hawkins, M., Malone, R., Lovett, D.K. & O'Mara, F.P. 2006 Effect of refined soy oil or whole soybeans on methane output, intake and performance of young bulls. J. Anim. Sci. 84, 2418–2425, (doi:10.2527/jas.2005-354). [CrossRef]

Junginger, M., Faaij, A., Koopmans, A., van den Broek, R. & Hulscher, W. 2001 Setting up fuel supply strategies for large scale bio-energy projects—a methodology for developing countries. Biomass Bioenergy 21, 259–275, (doi:10.1016/S0961-9534(01)00034-4). [CrossRef]

Kang, G.D., Cai, Z.C. & Feng, X.Z. 2002 Importance of water regime during the non-rice growing period in winter in regional variation of CH4 emissions from rice fields during following rice growing period in China. Nutr. Cycl. Agroecosyst. 64, 95–100, (doi:10.1023/A:1021154932643). [CrossRef]

Kasimir-Klemedtsson, A., Klemedtsson, L., Berglund, K., Martikainen, P., Silvola, J. & Oenema, O. 1997 Greenhouse gas emissions from farmed organic soils: a review. Soil Use Manage. 13, 245–250, (doi:10.1111/j.1475-2743.1997.tb00595.x). [CrossRef]

Kennedy, P.M. & Milligan, L.P. 1978 Effects of cold exposure on digestion, microbial synthesis and nitrogen transformation in sheep. Br. J. Nutr. 39, 105–117, (doi:10.1079/BJN19780017). [CrossRef]

Korontzi, S., Justice, C.O. & Scholes, R.J. 2003 Influence of timing and spatial extent of savanna fires in southern Africa on atmospheric emissions. J. Arid Environ. 54, 395–404, (doi:10.1006/jare.2002.1098). [CrossRef]

Külling, D.R., Menzi, H., Sutter, F., Lischer, P. & Kreuzer, M. 2003 Ammonia, nitrous oxide and methane emissions from differently stored dairy manure derived from grass- and hay-based rations. Nutr. Cycl. Agroecosyst. 65, 13–22, (doi:10.1023/A:1021857122265). [CrossRef]

Lal, R. 1999 Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Prog. Environ. Sci. 1, 307–326.

Lal, R. 2001 Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Clim. Change 15, 35–72, (doi:10.1023/A:1017529816140). [CrossRef]

Lal, R. 2003 Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit. Rev. Plant Sci. 22, 151–184, (doi:10.1080/713610854). [CrossRef]

Lal, R. 2004 Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627, (doi:10.1126/science.1097396). [CrossRef]

Lal, R. 2004 Soil carbon sequestration to mitigate climate change. Geoderma 123, 1–22, (doi:10.1016/j.geoderma.2004.01.032). [CrossRef]

Lal, R. 2004 Offsetting China's CO2 emissions by soil carbon sequestration. Clim. Change 65, 263–275, (doi:10.1023/B:CLIM.0000038203.81854.7c). [CrossRef]

Lal, R. 2004 Carbon sequestration in soils of central Asia. Land Degrad. Dev. 15, 563–572, (doi:10.1002/ldr.624). [CrossRef]

Lal, R. 2004 Soil carbon sequestration in India. Clim. Change 65, 277–296, (doi:10.1023/B:CLIM.0000038202.46720.37). [CrossRef]

Lal, R. 2005 Soil carbon sequestration for sustaining agricultural production and improving the environment with particular reference to Brazil. J. Sustain. Agric. 26, 23–42, (doi:10.1300/J064v26n02_04). [CrossRef]

Lal, R. & Bruce, J.P. 1999 The potential of world cropland soils to sequester C and mitigate the greenhouse effect. Environ. Sci. Policy 2, 177–185, (doi:10.1016/S1462-9011(99)00012-X). [CrossRef]

Lal, R., Follett, R.F. & Kimble, J.M. 2003 Achieving soil carbon sequestration in the United States: a challenge to the policy makers. Soil Sci. 168, 827–845, (doi:10.1097/01.ss.0000106407.84926.6b). [CrossRef]

Lee, H.-C., McCarl, B.A. & Gillig, D. 2005 The dynamic competitiveness of U.S. agricultural and forest carbon sequestration. Can. J. Agric. Econ. 53, 343–357, (doi:10.1111/j.1744-7976.2005.00023.x). [CrossRef]

Le Mer, J. & Roger, P. 2001 Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol. 37, 25–50, (doi:10.1016/S1164-5563(01)01067-6). [CrossRef]

Leng, R. A. 1991 Improving ruminant production and reducing methane emissions from ruminants by strategic supplementation. EPA report, no. 400/1-91/004. US Environmental Protection Agency, Washington, DC.

Li, C., Frolking, S. & Butterbach-Bahl, K. 2005 Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Clim. Change 72, 321–338, (doi:10.1007/s10584-005-6791-5). [CrossRef]

Liebig, M.A., Morgan, J.A., Reeder, J.D., Ellert, B.H., Gollany, H.T. & Schuman, G.E. 2005 Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada. Soil Till. Res. 83, 25–52, (doi:10.1016/j.still.2005.02.008). [CrossRef]

Lovett, D.K. & O'Mara, F.P. 2002 Estimation of enteric methane emissions originating from the national livestock beef herd: a review of the IPCC default emission factors. Tearmann 2, 77–83.

Lovett, D., Lovell, S., Stack, L., Callan, J., Finlay, M., Connolly, J. & O'Mara, F.P. 2003 Effect of forage/concentrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livest. Prod. Sci. 84, 135–146, (doi:10.1016/j.livprodsci.2003.09.010). [CrossRef]

Lovett, D.K., Shalloo, L., Dillon, P. & O'Mara, F.P. 2006 A systems approach to quantify greenhouse gas fluxes from pastoral dairy production as affected by management regime. Agric. Syst. 88, 156–179, (doi:10.1016/j.agsy.2005.03.006). [CrossRef]

Machmülller, A., Ossowski, D.A. & Kreuzer, M. 2000 Comparative evaluation of the effects of coconut oil, oilseeds and crystalline fat on methane release, digestion and energy balance in lambs. Anim. Feed Sci. Technol. 85, 41–60, (doi:10.1016/S0377-8401(00)00126-7). [CrossRef]

Machmüller, A., Soliva, C.R. & Kreuzer, M. 2003 Methane-suppressing effect of myristic acid in sheep as affected by dietary calcium and forage proportion. Br. J. Nutr. 90, 529–540, (doi:10.1079/BJN2003932). [CrossRef]

Manne, A.S. & Richels, R.G. 2004 A multi-gas approach to climate policy. The global carbon cycle. Integrating humans, climate, and the natural world (eds. Field, C.B. & Raupach, M.R.), pp. 439–452, Washington, DC: Island Press

Marland, G., McCarl, B.A. & Schneider, U.A. 2001 Soil carbon: policy and economics. Clim. Change 51, 101–117, (doi:10.1023/A:1017575018866). [CrossRef]

Marland, G. et al. 2003 The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy. Climate Policy 3, 149–157, (doi:10.1016/S1469-3062(03)00028-7). [CrossRef]

Marland, G., West, T.O., Schlamadinger, B. & Canella, L. 2003 Managing soil organic carbon in agriculture: the net effect on greenhouse gas emissions. Tellus B 55, 613–621, (doi:10.1034/j.1600-0889.2003.00054.x). [CrossRef]

McCarl, B.A. & Schneider, U.A. 2001 Greenhouse gas mitigation in U.S. agriculture and forestry. Science 294, 2481–2482, (doi:10.1126/science.1064193). [CrossRef]

McCaughney, W.P., Wittenberg, K. & Corrigan, D. 1999 Impact of pasture type on methane production by lactating cows. Can. J. Anim. Sci. 79, 221–226.

McCrabb, G.C. 2001 Nutritional options for abatement of methane emissions from beef and dairy systems in Australia. Greenhouse gases and animal agriculture (eds. Takahashi, J. & Young, B.A.), pp. 115–124, Amsterdam, The Netherlands: Elsevier

McCrabb, G.J., Kurihara, M. & Hunter, R.A. 1998 The effect of finishing strategy of lifetime methane production for beef cattle in northern Australia. Proc. Nutr. Soc. Aust. 22, 55.

McGinn, S.M., Beauchemin, K.A., Coates, T. & Colombatto, D. 2004 Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J. Anim. Sci. 82, 3346–3356.

Menon, S., Hansen, J., Nazarenko, L. & Luo, Y. 2002 Climate effects of black carbon aerosols in China and India. Science 297, 2250–2253, (doi:10.1126/science.1075159). [CrossRef]

Miglior, F., Muir, B.L. & Van Doormaal, B.J. 2005 Selection indices in Holstein cattle of various countries. J. Dairy Sci. 88, 1255–1263.

Millennium Ecosystem Assessment 2005 Findings from the conditions and trend working group. Washington, DC: Island Press.

Mills, J.A.N., Kebreab, E., Yates, C.M., Crompton, L.A., Cammell, S.B., Dhanoa, M.S., Agnew, R.E. & France, J. 2003 Alternative approaches to predicting methane emissions from dairy cows. J. Anim. Sci. 81, 3141–3150.

Moe, P.W. & Tyrrell, H.F. 1979 Methane production in dairy cows. J. Dairy Sci. 62, 1583–1586.

Monteny, G.J., Groenestein, C.M. & Hilhorst, M.A. 2001 Interactions and coupling between emissions of methane and nitrous oxide from animal husbandry. Nutr. Cycl. Agroecosyst. 60, 123–132, (doi:10.1023/A:1012602911339). [CrossRef]

Monteny, G.-J., Bannink, A. & Chadwick, D. 2006 Greenhouse gas abatement strategies for animal husbandry. Agric. Ecosyst. Environ. 112, 163–170, (doi:10.1016/j.agee.2005.08.015). [CrossRef]

Mosier, A.R., Duxbury, J.M., Freney, J.R., Heinemeyer, O., Minami, K. & Johnson, D.E. 1998 Mitigating agricultural emissions of methane. Clim. Change 40, 39–80, (doi:10.1023/A:1005338731269). [CrossRef]

Mosier, A.R., Halvorson, A.D., Peterson, G.A., Robertson, G.P. & Sherrod, L. 2005 Measurement of net global warming potential in three agroecosystems. Nutr. Cycl. Agroecosyst. 72, 67–76, (doi:10.1007/s10705-004-7356-0). [CrossRef]

Murray, R.M., Bryant, A.M. & Leng, R.A. 1976 Rate of production of methane in the rumen and the large intestine of sheep. Br. J. Nutr. 36, 1–14, (doi:10.1079/BJN19760053). [CrossRef]

Mutuo, P.K., Cadisch, G., Albrecht, A., Palm, C.A. & Verchot, L. 2005 Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutr. Cycl. Agroecosyst. 71, 43–54, (doi:10.1007/s10705-004-5285-6). [CrossRef]

Newbold, C. J. & Rode, L. M. 2005 Dietary additives to control methanogenesis in the rumen. In Second Int. Conf. on Greenhouse Gases and Animal Agriculture, Working Papers (eds C. R. Soliva, J. Takahashi, & M. Kreuzer), pp. 60–70. Zurich, Switzerland: ETH.

Newbold, C.J., Ouda, J.O., Lopez, S., Nelson, N., Omed, H., Wallace, R.J. & Moss, A.R. 2002 Propionate precursors as possible alternative electron acceptors to methane in ruminal fermentation. Greenhouse gases and animal agriculture (eds. Takahashi, J. & Young, B.A.), pp. 151–154, Amsterdam, The Netherlands: Elsevier

Newbold, C.J., López, S., Nelson, N., Ouda, J.O., Wallace, R.J. & Moss, A.R. 2005 Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. Br. J. Nutr. 94, 27–35, (doi:10.1079/BJN20051445). [CrossRef]

Oelbermann, M., Voroney, R.P. & Gordon, A.M. 2004 Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and southern Canada. Agric. Ecosyst. Environ. 104, 359–377, (doi:10.1016/j.agee.2004.04.001). [CrossRef]

Oenema, O., Wrage, N., Velthof, G.L., van Groenigen, J.W., Dolfing, J. & Kuikman, P.J. 2005 Trends in global nitrous oxide emissions from animal production systems. Nutr. Cycl. Agroecosyst. 72, 51–65, (doi:10.1007/s10705-004-7354-2). [CrossRef]

Ogle, S.M., Breidt, F.J., Eve, M.D. & Paustian, K. 2003 Uncertainty in estimating land use and management impacts on soil organic storage for US agricultural lands between 1982 and 1997. Global Change Biol. 9, 1521–1542, (doi:10.1046/j.1365-2486.2003.00683.x). [CrossRef]

Ogle, S.M., Breidt, F.J. & Paustian, K. 2005 Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry 72, 87–121, (doi:10.1007/s10533-004-0360-2). [CrossRef]

Olsson, L. & Ardo, J. 2002 Soil carbon sequestration in degraded semiarid agro-ecosystems—perils and potentials. Ambio 31, 471–477, (doi:10.1639/0044-7447(2002)031[0471:SCSIDS]2.0.CO;2). [CrossRef]

Pattey, E., Trzcinski, M.K. & Desjardins, R.L. 2005 Quantifying the reduction of greenhouse gas emissions as a result of composting dairy and beef cattle manure. Nutr. Cycl. Agroecosyst. 72, 173–187, (doi:10.1007/s10705-005-1268-5). [CrossRef]

Paul, E.A., Morris, S.J., Six, J., Paustian, K. & Gregorich, E.G. 2003 Interpretation of soil carbon and nitrogen dynamics in agricultural and afforested soils. Soil Sci. Soc. Am. J. 67, 1620–1628.

Paustian, K., Cole, C.V., Sauerbeck, D. & Sampson, N. 1998 CO2 mitigation by agriculture: an overview. Clim. Change 40, 135–162, (doi:10.1023/A:1005347017157). [CrossRef]

Paustian, K. et al. 2004. Agricultural mitigation of greenhouse gases: science and policy options. Council on Agricultural Science and Technology (CAST) report, R141 2004, ISBN 1-887383-26-3, p. 120, May, 2004.

Phetteplace, H.W., Johnson, D.E. & Seidl, A.F. 2001 Greenhouse gas emissions from simulated beef and dairy livestock systems in the United States. Nutr. Cycl. Agroecosyst. 60, 9–102, (doi:10.1023/A:1012657230589). [CrossRef]

Pinares-Patino, C.S., Ulyatt, M.J., Waghorn, G.C., Holmes, C.W., Barry, T.N., Lassey, K.R. & Johnson, D.E. 2003 Methane emission by alpaca and sheep fed on lucerne hay or grazed on pastures of perennial ryegrass/white clover or birdsfoot trefoil. J. Agric. Sci. 140, 215–226, (doi:10.1017/S002185960300306X). [CrossRef]

Reay, D.S., Smith, K.A. & Edwards, A.C. 2003 Nitrous oxide emission from agricultural drainage waters. Global Change Biol. 9, 195–203, (doi:10.1046/j.1365-2486.2003.00584.x). [CrossRef]

Reeder, J.D., Schuman, G.E., Morgan, J.A. & Lecain, D.R. 2004 Response of organic and inorganic carbon and nitrogen to long-term grazing of the shortgrass steppe. Environ. Manage. 33, 485–495, (doi:10.1007/s00267-003-9106-5). [CrossRef]

Rice, C.W. & Owensby, C.E. 2001 Effects of fire and grazing on soil carbon in rangelands. The potential of U.S. grazing lands to sequester carbon and mitigate the greenhouse effect (eds. Follet, R. Kimble, J.M. & Lal, R.), pp. 323–342, Boca Raton, FL: Lewis

Richter, B. 2004 Using ethanol as an energy source. Science 305, 340. (doi:10.1126/science.305.5682.340b). [CrossRef]

Robertson, G.P. 2004 Abatement of nitrous oxide, methane and other non-CO2 greenhouse gases: the need for a systems approach. The global carbon cycle. Integrating humans, climate, and the natural world (eds. Field, C.B. & Raupach, M.R.), pp. 493–506, Washington, DC: Island Press

Robertson, G.P. & Grace, P.R. 2004 Greenhouse gas fluxes in tropical and temperate agriculture: the need for a full-cost accounting of global warming potentials. Environ. Dev. Sustain. 6, 51–63, (doi:10.1023/B:ENVI.0000003629.32997.9e). [CrossRef]

Robertson, L.J. & Waghorn, G.C. 2002 Dairy industry perspectives on methane emissions and production from cattle fed pasture or total mixed rations in New Zealand. Proc. New Zeal. Soc. Anim. Prod. 62, 213–218.

Robertson, G.P., Paul, E.A. & Harwood, R.R. 2000 Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289, 1922–1925, (doi:10.1126/science.289.5486.1922). [CrossRef]

Rochette, P. & Janzen, H.H. 2005 Towards a revised coefficient for estimating N2O emissions from legumes. Nutr. Cycl. Agroecosyst. 73, 171–179, (doi:10.1007/s10705-005-0357-9). [CrossRef]

Rogner, H. et al. 2000 Energy resources. Ch. 5World energy assessment of the United Nations, UNDP, UNDESA/WEC (ed. Goldemberg, J.), pp. 135–171, New York, NY: UNDP

Rosegrant, M. Paisner, M. S. Meijer, S. & Witcover, J. 2001 Global food projections to 2020. Emerging trends and alternative futures. Washington, DC: IFPRI Publications. ISBN 0-89629-640-7. See http://www.ifpri.org/pubs/books/globalfoodprojections2020.htm. http://www.ifpri.org/pubs/books/globalfoodprojections2020.htm

Rumpler, W.V., Johnson, D.E. & Bates, D.B. 1986 The effect of high dietary cation concentrations on methanogenesis by steers fed with or without ionophores. J. Anim. Sci. 62, 1737–1741.

Schils, R.L.M., Verhagen, A., Aarts, H.F.M. & Sebek, L.B.J. 2005 A farm level approach to define successful mitigation strategies for GHG emissions from ruminant livestock systems. Nutr. Cycl. Agroecosyst. 71, 163–175, (doi:10.1007/s10705-004-2212-9). [CrossRef]

Schlesinger, W.H. 1999 Carbon sequestration in soils. Science 284, 2095. (doi:10.1126/science.284.5423.2095). [CrossRef]

Schmidely, P. 1993 Quantitative review on the use of anabolic hormones in ruminants for meat production. I. Animal performance. Ann. Zootech. 42, 333–359. [CrossRef]

Schnabel, R.R., Franzluebbers, A.J., Stout, W.L., Sanderson, M.A. & Stuedemann, J.A. 2001 The effects of pasture management practices. The potential of U.S. grazing lands to sequester carbon and mitigate the greenhouse effect (eds. Follett, R.F. Kimble, J.M. & Lal, R.), pp. 291–322, Boca Raton, FL: Lewis

Schneider, U.A. & McCarl, B.A. 2003 Economic potential of biomass based fuels for greenhouse gas emission mitigation. Environ. Resour. Econ. 24, 291–312, (doi:10.1023/A:1023632309097). [CrossRef]

Schneider, U.A. & McCarl, B.A. 2006 Implications of a carbon-based energy tax for US agriculture. Agric. Resour. Econ. Rev. 34, 265–278.

Scholes, R.J. & van der Merwe, M.R. 1996 Sequestration of carbon in savannas and woodlands. Environ. Prof. 18, 96–103.

Schuman, G.E., Herrick, J.E. & Janzen, H.H. 2001 The dynamics of soil carbon in rangelands. The potential of U.S. grazing lands to sequester carbon and mitigate the greenhouse effect (eds. Follett, R.F. Kimble, J.M. & Lal, R.), pp. 267–290, Boca Raton, FL: Lewis

Sheehan, J., Aden, A., Paustian, K., Killian, K., Brenner, J., Walsh, M. & Nelson, R. 2004 Energy and environmental aspects of using corn stover for fuel ethanol. J. Ind. Ecol. 7, 117–146, (doi:10.1162/108819803323059433). [CrossRef]

Sims, R.E.H., Hastings, A., Schlamadinger, B., Taylor, G. & Smith, P. 2006 Energy crops: current status and future prospects. Global Change Biol. 12, 2054–2076, (doi:10.1111/j.1365-2486.2006.01163.x). [CrossRef]

Six, J., Ogle, S.M., Breidt, F.J., Conant, R.T., Mosier, A.R. & Paustian, K. 2004 The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Biol. 10, 155–160, (doi:10.1111/j.1529-8817.2003.00730.x). [CrossRef]

Smeets, E.M.W., Faaij, A.P.C., Lewandowski, I.M. & Turkenburg, W.C. 2007 A bottom up quickscan and review of global bio-energy potentials to 2050. Prog. Energy Combust. Sci. 33, 56–106, (doi:10.1016/j.pecs.2006.08.001). [CrossRef]

Smith, P. 2004 Carbon sequestration in croplands: the potential in Europe and the global context. Eur. J. Agron. 20, 229–236, (doi:10.1016/j.eja.2003.08.002). [CrossRef]

Smith, P. 2004 Engineered biological sinks on land. The global carbon cycle. Integrating humans, climate, and the natural world (eds. Field, C.B. & Raupach, M.R.), pp. 479–491, Washington, DC: Island Press

Smith, K.A. & Conen, F. 2004 Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manage. 20, 255–263, (doi:10.1079/SUM2004238). [CrossRef]

Smith, P., Powlson, D.S., Smith, J.U., Falloon, P.D. & Coleman, K. 2000 Meeting Europe's climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Global Change Biol. 6, 525–539, (doi:10.1046/j.1365-2486.2000.00331.x). [CrossRef]

Smith, P., Goulding, K.W., Smith, K.A., Powlson, D.S., Smith, J.U., Falloon, P.D. & Coleman, K. 2001 Enhancing the carbon sink in European agricultural soils: including trace gas fluxes in estimates of carbon mitigation potential. Nutr. Cycl. Agroecosyst. 60, 237–252, (doi:10.1023/A:1012617517839). [CrossRef]

Smith, P., Andrén, O., Karlsson, T., Perälä, P., Regina, K., Rounsevell, M. & van Wesemael, B. 2005 Carbon sequestration potential in European croplands has been overestimated. Global Change Biol. 11, 2153–2163, (doi:10.1111/j.1365-2486.2005.01052.x). [CrossRef]

Smith, J.U. et al. 2005 Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Global Change Biol. 11, 2141–2152, (doi:10.1111/j.1365-2486.2005.001075.x). [CrossRef]

Smith, P. et al. 2007 Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric. Ecosyst. Environ. 118, 6–28, (doi:10.1016/j.agee.2006.06.006). [CrossRef]

Soussana, J.-F., Loiseau, P., Viuchard, N., Ceschia, E., Balesdent, J., Chevallier, T. & Arrouays, D. 2004 Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manage. 20, 219–230, (doi:10.1079/SUM2003234). [CrossRef]

Spatari, S., Zhang, Y. & Maclean, H.L. 2005 Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles. Environ. Sci. Technol. 39, 9750–9758, (doi:10.1021/es048293+). [CrossRef]

Sperow, M., Eve, M. & Paustian, K. 2003 Potential soil C sequestration on U.S. agricultural soils. Clim. Change 57, 319–339, (doi:10.1023/A:1022888832630). [CrossRef]

Squires, V. Glenn, E. P. & Ayoub, A. T. 1995 Combating global climate change by combating land degradation. In Proc. Workshop in Nairobi, 4–8 Sept. 1995, p. 348. Nairobi, Kenya: UNEP.

Strengers, B., Leemans, R., Eickhout, B., ve Vries, B. & Bouwman, L. 2004 The land-use projections and resulting emissions in the IPCC SRES scenarios as simulated by the Image 2.2 model. GeoJournal 61, 381–393, (doi:10.1007/s10708-004-5054-8). [CrossRef]

US-EPA 2006 Global anthropogenic non-CO2 greenhouse gas emissions: 1990–2020, United States Environmental Protection Agency, EPA 430-R-06-003, June 2006. Washington, DC: US-EPA.

Van Nevel, C.J. & Demeyer, D.I. 1995 Lipolysis and biohydrogenation of soybean oil in the rumen in vitro: inhibition by antimicrobials. J. Dairy Sci. 78, 2797–2806.

Van Nevel, C.J. & Demeyer, D.I. 1996 Influence of antibiotics and a deaminase inhibitor on volatile fatty acids and methane production from detergent washed hay and soluble starch by rumen microbes in vitro. Anim. Feed Sci. Technol. 37, 21–31, (doi:10.1016/0377-8401(92)90117-O). [CrossRef]

van Wilgen, B.W., Govender, N., Biggs, H.C., Ntsala, D. & Funda, X.N. 2004 Response of savanna fire regimes to changing fire-management policies in a large African National Park. Conserv. Biol. 18, 1533–1540, (doi:10.1111/j.1523-1739.2004.00362.x). [CrossRef]

Venkataraman, C., Habib, G., Eiguren-Fernandez, A., Miguel, A.H. & Friedlander, S.K. 2005 Residential biofuels in south Asia: carbonaceous aerosol emissions and climate impacts. Science 307, 1454–1456, (doi:10.1126/science.1104359). [CrossRef]

Waghorn, G.C., Tavendale, M.H. & Woodfield, D.R. 2002 Methanogenesis from forages fed to sheep. Proc. New Zeal. Soc. Anim. Prod. 64, 161–171.

Wallace, R. J. Wood, T. A. Rowe, A. Price, J. Yanez, D. R. Williams, S. P. & Newbold, C. J. 2005 Encaspulated fumaric acid as a means of decreasing ruminal methane emissions. In Second Int. Conf. on Greenhouse Gases and Animal Agriculture, Working Papers (eds C. R. Soliva, J. Takahashi & M. Kreuzer), pp. 86–89. Zurich, Switzerland: ETH.

Wang, M.X. & Shangguan, X.J. 1996 CH4 emission from various rice fields in PR China. Theor. Appl. Climatol. 55, 129–138, (doi:10.1007/BF00864708). [CrossRef]

Wassmann, R., Lantin, R.S., Neue, H.U., Buendia, L.V., Corton, T.M. & Lu, Y. 2000 Characterization of methane emissions from rice fields in Asia. III. Mitigation options and future research needs. Nutr. Cycl. Agroecosyst. 58, 23–36, (doi:10.1023/A:1009874014903). [CrossRef]

West, T.O. & Post, W.M. 2002 Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci. Soc. Am. J. 66, 1930–1946.

Wolin, E.A., Wolf, R.S. & Wolin, M.J. 1964 Microbial formation of methane. J. Bacteriol. 87, 993–998.

Woodward, S.L., Waghorn, G.C., Ulyatt, M.J. & Lassey, K.R. 2001 Early indications that feeding Lotus will reduce methane emissions from ruminants. Proc. New Zeal. Soc. Anim. Prod. 61, 23–26.

Wright, A.D.G., Kennedy, P., O'Neill, C.J., Troovey, A.F., Popovski, S., Rea, S.M., Pimm, C.L. & Klein, L. 2004 Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine 22, 3976–3985, (doi:10.1016/j.vaccine.2004.03.053). [CrossRef]

Xu, H., Cai, Z.C., Jia, Z.J. & Tsuruta, H. 2000 Effect of land management in winter crop season on CH4 emission during the following flooded and rice-growing period. Nutr. Cycl. Agroecosyst. 58, 327–332, (doi:10.1023/A:1009823425806). [CrossRef]

Xu, H., Cai, Z.C. & Tsuruta, H. 2003 Soil moisture between rice-growing seasons affects methane emission, production, and oxidation. Soil Sci. Soc. Am. J. 67, 1147–1157.

Yagi, K., Tsuruta, H. & Minami, K. 1997 Possible options for mitigating methane emission from rice cultivation. Nutr. Cycl. Agroecosyst. 49, 213–220, (doi:10.1023/A:1009743909716). [CrossRef]

Yan, T., Agnew, R.E., Gordon, F.J. & Porter, M.G. 2000 Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livest. Prod. Sci. 64, 253–263, (doi:10.1016/S0301-6226(99)00145-1). [CrossRef]

Yan, X., Ohara, T. & Akimoto, H. 2003 Development of region-specific emission factors and estimation of methane emission from rice field in East, Southeast and South Asian countries. Global Change Biol. 9, 237–254, (doi:10.1046/j.1365-2486.2003.00564.x). [CrossRef]

Thursday, October 9, 2008

Amazônia deve ficar fora de área para plantio de cana-de-açú car, anuncia ministro Stephanes




Amazônia deve ficar fora de área para plantio de cana-de-açúcar, anuncia ministro Stephanes - 08/10/2008

Local: Brasília - DF
Fonte: Agência Senado
Link: http://www.senado.gov.br

O ministro da Agricultura, Pecuária e Abastecimento, Reinhold Stephanes, anunciou há pouco a conclusão de estudo sobre o zoneamento agroecológico para produção de cana-de-açúcar, que ainda falta ser aprovado. Segundo informou, os biomas Amazônia e Pantanal não serão incluídos na área considerada apta para a produção da cana.

Stephanes participa de debate sobre a expansão das culturas para produção de biocombustíveis, em reunião na Comissão de Agricultura e Reforma Agrária (CRA), em conjunto com a Subcomissão dos Biocombustíveis.

Segundo Stephanes, ainda, o estudo que acaba de ser concluído aponta 65 milhões de hectares para plantio de cana, dos quais 37 milhões são áreas de pastagem degradadas. Ele também anunciou que a expansão da cana nos próximos oito anos será de cerca de cinco milhões de hectares.




Tuesday, October 7, 2008

climate registry reporting protocol

This document, by the The Climate Registry, details their definition of Scope 1, Scope 2, and Scope 3 emissions.

Friday, October 3, 2008

Tesco defends carbon label scheme - 21 May 2008 - BusinessGreen

Tesco defends carbon label scheme - 21 May 2008 - BusinessGreen: "Tesco has today launched an impassioned defence of its plans to put carbon labels on all its products, rejecting accusations that the labels confuse customers and insisting that its pilot scheme has already delivered significant tangible benefits."

New Sugarcanes to Deliver One-Two Energy Punch | BiobasedNews.com

New Sugarcanes to Deliver One-Two Energy Punch | BiobasedNews.com: "New Sugarcanes to Deliver One-Two Energy Punch
Oct 2, 2008 - By Jan Suszkiw, USDA-ARS

New varieties of sugarcane and other crops adapted to the U.S. Gulf Coast region are being developed for use in making ethanol as a cleaner-burning alternative to gasoline.

Agricultural Research Service (ARS) scientists, in cooperation with the Louisiana Agricultural Experiment Station (LAES) and the American Sugar Cane League, USA (ASCL), have already released three new varieties of 'energy sugarcane.' They're called that because of their high stalk contents of sugar and fiber, which could eventually serve as complementary ethanol feedstocks.

Raw-sugar processors now burn the fiber to generate heat that powers stalk-crushing and sugar-crystallization processes, notes Edward Richard, who leads the ARS Sugarcane Research Unit in Houma, La. The extracted sucrose sugar is sold for consumption or converted into ethanol. However, Richard anticipates that biorefineries will use the fiber as well, once technologies for converting cellulose into ethanol become economically feasible."

Biofuels Sustainability Framework

"Scientists call for sustainability framework for U.S. biofuels
from Bioenergy pact between Europe and Africa by Biopact team
In his State of the Union Address on January 23, 2007, President Bush stated that, in order to substantially lower foreign oil imports, 'We must increase the supply of alternative fuels, by setting a mandatory fuels standard to require 35 billion gallons of renewable and alternative fuels in 2017.'

This mandate coupled with a $1.01 ethanol refiner subsidy promised in the 2008 Farm Bill and a $45 subsidy per ton of biomass production for growers are putting energy needs ahead of environmental sustainability, according to an article in the October 3, 2008 issue of Science Magazine entitled 'Sustainable Biofuels Redux'."